HomemadeTurbo - DIY Turbo Forum

HomemadeTurbo - DIY Turbo Forum (https://www.homemadeturbo.com/)
-   General Discussion (https://www.homemadeturbo.com/general-discussion-6/)
-   -   temp of 90* at 4 inch raduis (https://www.homemadeturbo.com/general-discussion-6/temp-90%2A-4-inch-raduis-47673/)

linkmustang 10-09-2005 01:48 PM

temp of 90* at 4 inch raduis
 
any one have a temp of 90* at 4 inch raduis pipe is 2.25 trying to fab some stuff up

germ 10-09-2005 02:02 PM

Re: temp of 90* at 4 inch raduis
 
???

linkmustang 10-09-2005 02:13 PM

Re: temp of 90* at 4 inch raduis
 
my attempt i have pu put the curves in but how much of a curce is all to scate i used a ruler on the screen
http://putfile.com/pic.php?pic=10/28114124910.png&s=x10

Dr.Boost 10-09-2005 02:14 PM

Re: temp of 90* at 4 inch raduis
 
i dun nou but it fiy urt iz thut ig miert be a oiluj of a situitno if irs doulg slepp sothming riuygh? :-\
__________________
Best Car Insurance | Auto Protection Today | FREE Trade-In Quote

linkmustang 10-09-2005 02:15 PM

Re: temp of 90* at 4 inch raduis
 
my attempt i have pu put the curves in but how much of a curce is all to scate i used a ruler on the screen
http://x10.putfile.com/10/28114124910.png

Dr.Boost 10-09-2005 02:16 PM

Re: temp of 90* at 4 inch raduis
 
http://pic14.picturetrail.com/VOL564...6/98930600.jpg
__________________
Best Car Insurance | Auto Protection Today | FREE Trade-In Quote

linkmustang 10-09-2005 02:20 PM

Re: temp of 90* at 4 inch raduis
 
lol

ok here

i bought 4 90* bends from lsdmotersport and they are going to be shipped on thursday. so im trying to get so of the work done before that. so i was wondering if anyone has a templet of a 90degree bend that has a 4inch radius and the pipe is a 2.25

Dr.Boost 10-09-2005 02:26 PM

Re: temp of 90* at 4 inch raduis
 
Ah, gotcha! ---- I know I've seen one somewhere on the internet. I'll see if I can find one......
__________________
Best Car Insurance | Auto Protection Today | FREE Trade-In Quote

linkmustang 10-09-2005 02:32 PM

Re: temp of 90* at 4 inch raduis
 
thanks

Dr.Boost 10-09-2005 02:35 PM

Re: temp of 90* at 4 inch raduis
 
I'll start by trying to clarify what sines and cosines are, and
then I'll talk a little bit about the unit circle. Most of what
is happening with trig can be described with individual triangles.
The circle is just a way to describe the collection of triangles
and give meaning to the sign (+ or -) of trig functions.

The Sine. If theta is an interior angle of a right triangle, then
the sine of theta, written: sin(theta) is the ratio of the
opposite side to the hypotenuse.

The Cosine. If theta is an interior angle of a right triangle,
then the cosine of theta, written cos(theta) is the ratio of the
adjacent side to the hypotenuse.

One thing that you expressed confusion about is that if theta is
between 0 and 90 (as it must be from the above definitions of sine
and cosine)

Cos (90 - theta) = Sin (theta) and Sin (90-theta) = Cos (theta).

Think about a right triangle ABC
A where a refers to the angle at vertex A, etc.
|\ that is, b is a right angle.
| \ BC
| \ Well, Sin (a) = ---- because BC is the opposite side
| \ AC
| \ BC
| \ and AC is the hypotenuse, then Cos (c) = ---- because
|______\ AC
B C we moved to angle c so BC is now the adjacent side, and
AC is still the hypotenuse. These ratios are identical,
so we can write Sin (a) = Cos (c). Since the sum of the interior
angles in any triangle is 180 degrees, and we already established
that b is a 90 degree angle, then the angle measures of a and c
must sum to 90.

Then we can rewrite c = 90-a or a = 90-c, and substituting into
the above equality, we get Sin (a) = Cos (90-a) or Sin (90-c) =
Cos (c).

Now I will address your primary question: What does all of this
have to do with the unit circle. I am limited to ascii graphics,
so I'm not going to draw a circle here, but if you get a pencil
and paper and draw a circle of radius 1, centered at the origin of
the x-y plane. Then the circle should intercept the x-axis at +1
and -1, and also intercept the y-axis as +1 and -1.

Pick a point on the unit circle (we'll start with one in the first
quadrant) connect it to the center with a radius and drop a
vertical that connects it to the x-axis. Note that this describes
a triangle. Also note that the length of the hypotenuse is 1.
All we did to describe the triangle was to pick a point on the
circle, so we can think of the unit circle as describing the
collection of right triangles with hypotenuse 1. We could
generalize this to say that the circle of radius r describes the
collection of all triangles with hypotenuse of length r, but any
right triangle is similar to some right triangle with hypotenuse
length 1, and 1 is such a nice number to have in the denominator,
that we restrict ourselves to the unit circle.

What does this tell us?

One nice thing about a triangle determined by a point on the unit
circle (X,Y), is that we can read the trig values of the angle
formed by the radius and the x-axis, pretty easily. The radius of
the unit circle is the hypotenuse of the triangle, and the region
[0,X] (or [X,0] if X<0) is one leg of the triangle, we can see
that the length of this leg is X. The other leg is the line that
goes from (X,0) to (X,Y) so we can see that that length is Y.
Then if theta is the angle less than 90 defined by the hypotenuse
and the x-axis,

opposite Y
Sin (theta) = ---------- = -------
hypotenuse 1

and
adjacent X
Cos (theta) = ----------- = ----
hypotenuse 1

The last thing that I'm going to talk about is how we extend our
notion of Sine and Cosine to angles that measure greater than 90
degrees.

Now pick any point on the unit circle (go for one not in the first
quadrant) make the triangle, except this time, we're going to
measure the angle that the radius makes with the positive x-axis
measured counter-clockwise from the positive x-axis. That is, if
you choose (0,1) then your angle is 90 degrees, and if you choose
(0,-1) your angle is 270 degrees.

The difference is that this time we are going to say that the
length of the legs are X and Y even if X and/or Y are negative,
then we will be able to get negative sines and cosines.

If you choose a point in the second quadrant X is negative but Y
is positive so Cos (theta) = X will be negative, but Sin (theta) =
Y will be positive. Similary Both Cosine and Sine will be
negative in the third quadrant and Cosine will be positive, but
Sine will be negative in the fourth quadrant.

I hope that I have adequately addressed your question.
__________________
Best Car Insurance | Auto Protection Today | FREE Trade-In Quote


All times are GMT -5. The time now is 09:54 AM.


© 2024 MH Sub I, LLC dba Internet Brands