General Discussion Off-Topic Discussion and Enlightenment

Failed Emission - Need Help!!

Thread Tools
 
Search this Thread
 
Old 05-01-2005, 12:55 PM
  #11  
1.0 BAR
 
88b16civic's Avatar
 
Join Date: May 2003
Posts: 326
Default Re: Failed Emission - Need Help!!

Nitrogen makes up almost 80% of the atmosphere. Though normally inert and not directly involved in the combustion process itself, flame temeratures above 2500 degrees F cause nitrogen and oxygen to oxidize and combine. This combination forms various compounds called "oxides of nitrogen" or NOx.

My suggestion is to retard your timing which lowers comb temps, and definitely hook the EGR up. If you have some room to spare under the HC and CO emissions, you should richen up your fuel. This also lowers temps but raises HC and CO.

If you want to lower CO and HC add denatured ethanol to you tank.
88b16civic is offline  
Old 05-01-2005, 12:59 PM
  #12  
3.0 BAR
 
tranceminister's Avatar
 
Join Date: Mar 2003
Posts: 5,282
Default Re: Failed Emission - Need Help!!

Good info 88b16civic. Here's some more info I found and what to do to solve certain situations in which you might fail your emmission's tests. Sorry it's long but this could help people out if they understand how the combustion part of an engine works.

See bottom section to help troubleshoot your emissions problems.
http://www.cybrrpartspro.com/C....HTML
The exhaust gases emitted into the atmosphere are a combination of burned and unburned fuel. To understand the exhaust emission and its composition, review some basic chemistry.

When the air/fuel mixture is introduced into the engine, we are mixing air, composed of nitrogen (78%), oxygen (21%) and other gases (1%) with the fuel, which is 100% hydrocarbons (HC), in a semi-controlled ratio. As the combustion process is accomplished, power is produced to move the vehicle while the heat of combustion is transferred to the cooling system. The exhaust gases are then composed of nitrogen, a diatomic gas (N2), the same as was introduced in the engine, carbon dioxide (CO2), the same gas that is used in beverage carbonation and water vapor (H2O). The nitrogen (N2), for the most part, passes through the engine unchanged, while the oxygen (O2) reacts (burns) with the hydrocarbons (HC) and produces carbon dioxide (CO2) and water vapors (H2O). If this chemical process were the only process to take place, the exhaust emissions would be harmless. However, during the combustion process, other pollutants are formed which are considered dangerous. These pollutants are carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), oxides of sulfur (SOx), and engine particulates.

Lead (Pb), is considered one of the particulates and is present in the exhaust gases whenever leaded fuels are used. Lead (Pb) does not dissipate easily. Levels can be high along roadways when it is emitted from vehicles and can pose a health threat. Since the increased usage of unleaded gasoline and the phasing out of leaded gasoline for fuel, this pollutant has greatly diminished. While not considered a major threat, lead is still a dangerous pollutant.

HYDROCARBONS

--------------------------------------------------------------------------------

Hydrocarbons (HC) are essentially unburned fuel that have not been successfully burned during the combustion process or have escaped into the atmosphere through fuel evaporation. The main sources of incomplete combustion are rich air/fuel mixtures, low engine temperatures and improper spark timing. The main sources of hydrocarbon emission through fuel evaporation come from the vehicle's fuel tank and carburetor bowl (if equipped).

To reduce combustion hydrocarbon emission, engine modifications were made to minimize dead space and surface area in the combustion chamber. In addition,the air/fuel mixture was made more lean through improved carburetion, fuel injection and by the addition of external controls to aid in further combustion of the hydrocarbons outside the engine. Two such methods were the addition of an air injection system, to inject fresh air into the exhaust manifolds and the installation of a catalytic converter, a unit that is able to burn traces of hydrocarbons without affecting the internal combustion process or fuel economy.

To control hydrocarbon emissions through fuel evaporation, modifications were made to the fuel tank and carburetor bowl to allow storage of the fuel vapors during periods of engine shut-down, and then at specific times during engine operation, to purge and burn these same vapors by blending them with the air/fuel mixture.

CARBON MONOXIDE

--------------------------------------------------------------------------------

Carbon monoxide is formed when not enough oxygen is present during the combustion process to convert carbon (C) to carbon dioxide (CO2). An increase in the carbon monoxide (CO) emission is normally accompanied by an increase in the hydrocarbon (HC) emission, because of the lack of oxygen to completely burn all of the fuel mixture.

Carbon monoxide (CO) also increases the rate at which the photo-chemical smog is formed by speeding up the conversion of nitric oxide (NO) to nitrogen dioxide (NO2). To accomplish this, carbon monoxide (CO) combines with oxygen (O2) and nitric Oxide (NO) to produce carbon dioxide (CO2) and nitrogen dioxide (NO2). (CO + O2 + NO = CO2 + NO2).

The dangers of carbon monoxide, which is an odorless, colorless toxic gas are many. When carbon monoxide is inhaled into the lungs and passed into the blood stream, oxygen is replaced by the carbon monoxide in the red blood cells, causing a reduction in the amount of oxygen being supplied to the many parts of the body. This lack of oxygen causes headaches, lack of coordination, reduced mental alertness and, should the carbon monoxide concentration be high enough, death could result.

NITROGEN

--------------------------------------------------------------------------------

Normally, nitrogen is an inert gas. When heated to approximately 2500°F (1371°C) through the combustion process, this gas becomes active and causes an increase in the nitric oxide (NOx) emission.

Oxides of nitrogen (NOx) are composed of approximately 97-98 percent nitric oxide (NO). Nitric oxide is a colorless gas, but when it is passed into the atmosphere, it combines with oxygen and forms nitrogen dioxide (NO2). The nitrogen dioxide then combines with chemically active hydrocarbons (HC) and when in the presence of sunlight, causes the formation of photo-chemical smog.

OZONE

--------------------------------------------------------------------------------

To further complicate matters, some of the nitrogen dioxide (NO2) is broken apart by sunlight to form nitric oxide and oxygen. (NO2 + sunlight = NO + O). This single atom of oxygen then combines with diatomic (meaning 2 atoms) oxygen (O2) to form ozone (O3). Ozone is one of the smells associated with smog. It has a pungent and offensive odor, irritates the eyes and lung tissues, affects the growth of plant life and causes rapid deterioration of rubber products. Ozone can be formed by sunlight, as well as by electrical discharge into the air.

The most common discharge area on the automobile engine is the secondary ignition electrical system, especially when inferior quality spark plug cables are used. As the surge of high voltage is routed through the secondary cable, the circuit builds up an electrical field around the wire, acting upon the oxygen in the surrounding air to form the ozone. The faint glow along the cable with the engine running that may be visible on a dark night, is called the "corona discharge." It is the result of the electrical field passing from a high voltage along the cable, to a low voltage in the surrounding air, which forms the ozone gas. The combination of corona and ozone has been a major cause of cable deterioration. Recently, different types and better quality insulating materials have lengthened the life of electrical cables.

Although ozone at ground level can be harmful, ozone is beneficial to the earth's inhabitants. By having a concentrated ozone layer called the "ozonosphere," between 10 and 20 miles (16-32 km) up in the atmosphere, much of the ultra violet radiation from the sun's rays is absorbed and screened. If this ozone layer were not present, much of the earth's surface would be burned, dried-out and unfit for human life.

There has been much discussion concerning the ozone layer and its density. A feeling exists that this protective layer of ozone is slowly diminishing and corrective action must be directed to this problem. Much experimenting is presently being conducted to determine if a problem exists and if so, the short and long-term effects of the problem as well as how it can be remedied.

OXIDES OF SULFUR

--------------------------------------------------------------------------------

Oxides of sulfur (SOx) were initially ignored in exhaust system emissions, since the sulfur content of gasoline as a fuel is less than 1/10 of 1 percent. Because of this small amount, it was felt that it contributed very little to the overall pollution problem. However, because of the difficulty in solving the sulfur emission in industrial pollution, as well as the introduction of the catalytic converter to automobile exhaust systems, a change was mandated.

The automobile exhaust system, when equipped with a catalytic converter, changes the sulfur dioxide (SO2) into sulfur trioxide (SO3). When SO3 combines with water vapors (H2O), a sulfuric acid mist (H2SO4) is formed which is a very difficult pollutant to handle and is extremely corrosive. This sulfuric acid mist that forms is the same mist that rises from the vents of an automobile storage battery when an active chemical reaction takes place within the battery cells.

When a large concentration of vehicles equipped with catalytic converters is being operated in an area, this acid mist will rise and be distributed over a large ground area causing land, plant, crop, paints and building damage.

PARTICULATE MATTER

--------------------------------------------------------------------------------

A certain amount of particulate matter is present in the burning of any fuel, with carbon constituting the largest percentage of the particulates. In gasoline, the remaining percentage of particulates is the burned remains of the various other compounds used in its manufacture. When a gasoline engine is in good internal condition, the particulate emissions are low, but as the engine wears internally, the particulate emissions increase. By visually inspecting the tailpipe emissions, a determination can be made as to where an engine defect may exist. An engine with light gray smoke emitting from the tailpipe normally indicates an increase in the oil consumption through burning due to internal engine wear. Black smoke would indicate a defective fuel delivery system, causing the engine to operate in a rich mode. Regardless of the color of the smoke, the internal part of the engine or the fuel delivery system should be repaired to a "like new" condition to prevent excess particulate emissions.

Diesel and turbine engines emit a darkened plume of smoke from the exhaust system because of the type of fuel used. Emission control regulations are mandated for this type of emission and more stringent measures are being used to prevent excess emission of the particulate matter. Electronic components have been introduced to control the injection of the fuel at precisely the proper time of piston travel, to achieve the optimum in fuel ignition and fuel usage. Other particulate after-burning components are being tested to achieve cleaner emissions.

Good grades of engine lubricating oils should be used, meeting the manufacturers specification. "Cut-rate" oils can contribute to the particulate emission problem because of their low "flash" or ignition temperature point. Such oils burn prematurely during the combustion process resulting in emissions of particulate matter.

The cooling system is an important factor in the reduction of particulate matter. With the cooling system operating at a temperature specified by the manufacturer, the optimum of combustion will occur. The cooling system must be maintained in the same manner as the engine oiling system, as each system is required to perform properly in order for the engine to operate efficiently for a long time.


http://www.firstfives.org/faq/smog/smog_faq.html
Condition= HC | CO | CO2 | O2 | NOX

Retarded timing= Decreased | Same or increase | No change | No change | Large decrease

Very retarded timing= Some increase | No change | Some to large decrease | No change | Large decrease

Advanced timing= Increase | Same or less | No change | No change | Large increase

Rich mixture= Some to large increase | Large increase | Some increase | Decrease | Decrease

Lean mixture= Increase | Large decrease | Decrease | Increase | Some to large increase

Very lean mixture = Large increase | Large decrease | Decrease | Large increase | Some to large decrease

Ignition Miss= Large increase | Some decrease | Some decrease | Some to large increase | Some to large decrease

Compression loss= Some to large increase | Decrease | Decrease | Increase | Some to large decrease

Worn engine= Increase | Increase | Decrease | Decrease | Same or less

Air injection= Large decrease | Large decrease | Some to large decrease | Large increase | No change

EGR working= No change | No change | Some decrease | No change | Large decrease

EGR leaking= Increase | No change | Same or less | No change | Same or less

Cat working= Decrease | Decrease | Increase | Increase | Decrease with 3-way cat

Condition= HC | CO | CO2 | O2 | NOX
tranceminister is offline  
Old 05-01-2005, 02:17 PM
  #13  
1.5 BAR
Thread Starter
 
StanB's Avatar
 
Join Date: Sep 2003
Posts: 842
Default Re: Failed Emission - Need Help!!

Most of you have recommended retarding the timing so I'll definately do it for the next test.

88b16civic and nonvtec, my engine is a D16Z6 and it does not have an EGR valve.

Tranceminister, excellent information on HC, CO and NOx.

Also, I am also running Uberdata. I don't have the capability to burn a chip so I am unable to richen the mixrure. I threw away the stock CAT so I might have to buy one for the purpose of passing emission.

Thanks to everyone for all the help.

StanB is offline  
Related Topics
Thread
Thread Starter
Forum
Replies
Last Post
zex_cool
General Discussion
6
02-26-2006 02:43 PM
cloud
General Discussion
5
10-02-2005 12:24 PM
2genCRX
General Discussion
17
02-09-2005 02:37 PM
Spenser
Turbo Parts For Sale
6
02-08-2005 11:00 AM
Turbodelsolman
General Discussion
34
11-22-2003 04:20 PM



Quick Reply: Failed Emission - Need Help!!



All times are GMT -5. The time now is 07:59 AM.